



IPL  
INTERNATIONAL  
SUMMER SCHOOL



# SUMMER SCHOOL

## *in applied chemistry*

*June 11 - July 09, 2026*  
*Lyon, France*



# The €2500 program fee covers:

- **Housing in a student residence**

*Individual rooms with bathroom.*

- **French classes**

*ECTS credits: 2. Three levels: beginner, intermediate, advanced.*

- **Tentative list of cultural and industrial visits and activities**

*Transportation provided.*

## In Lyon

- A **tour of the city** and its architecture, history
- A **cooking class**
- A **French session** at the local market
- A session on **intercultural communication**

## Tain l'Hermitage

- **Valrhôna:** chocolate museum and factory with a tasting
- **Cave de Tain:** tour of a winery with a tasting **The Lyon region**
- **Visits to companies :** Bayer, The United Nations Office at Geneva ou Red Cross Office at Geneva
- Visit to a cosmetics company (TBC)

- **Practical lab sessions at ITECH**

*ECTS credits: 7*





## Program

### I. Adhesive formulation and practical work in application

*Instructor: Sylvie Durdilly et Céline Akono-Zibi*

- **Manufacturing, application, and controls of a wood adhesive with:**
  - Specifications
  - The role of raw materials
  - Control of bonds (on the wood shear ample)
  - Shear test with a dynamometer
  - Application of a pressure sensitive adhesive
  - Loop tack test with a dynamometer

### II. Manufacturing of decorative water-based paints

*Instructor: Jean-Pascal Philibert*

- **Main steps of the process**
  - Handling the raw materials for a white water-based paint (*fillers, pigment, binder, additives*)
  - Carrying out all the stages of the process
  - Application on standard panels
  - Quality control of decorative paint: rheology-opacity/gloss/specific gravity/dry content
  - Analysis of the results
- **Learning outcomes**
  - Process engineering: water-based coating manufacturing
  - Structure/properties relations: impact of raw materials on coating performances
  - Quality control: how to characterize a liquid paint formulation

### III. How to design a plastic part: from design to end-of life.

Instructor: Cédric Boschard

- **How to choose a plastic material:**
  - Introduction to what is a plastic and different families
  - Practical work on material recognition
- **How to design a part and understand its properties:**
  - Demonstration and practical session on a CAD software
  - Demonstration of multiple standardized tests for plastics
- **The different manufacturing techniques**
  - Introduction to different plastic processing technologies (*Injection, Thermoforming...*) along with demonstrations
- **Recycling:**
  - Closed-loop economy, and sustainable development
- **Learning outcomes**
  - Understanding what is a plastic with their different families
  - Basic knowledge of different plastic processing technologies (*Injection molding, thermoforming, etc...*)
  - Characterization of plastic materials (*tensile, Impact...*)
  - Basic knowledge on plastic recycling techniques.



### IV. Practical work in colorimetry

Instructor: Caroline Gouttebarge and Sophie Nazarian

- **Course content**
  - Presentation of basics of colorimetry: observation conditions (*lights*)
  - Color characteristics (*hue, chroma, lightness*)
  - Presentation of colorimetry software:
    - \* Quality control: interpretation of colorimetry data (*Cielab color space*)
- **Practical work**
  - Reproduce a target color using colorimetric software and lights cabin
- **Learning outcomes**
  - Visual evaluation of color
  - Measurement of tonality, saturation, color
  - Color matching (*with various tools*)



## V. Introduction to leather manufacturing

*Instructor: Franck Diaz, Agnès Thomasset, and Delphine Bégué*

- **Theoretical content**

- Introduction to leather processes: from raw hides to finish leather : Beamhouse, Tanning, Wet-end, and Finishing
- The basics of leather formulation

- **Practical work**

- Let's dive into the wet-end process and give the intrinsic characteristics to leathers : Color and softness
- Let's discover the finishing process and make finished leather: Upgrading, final color, shine, touch and protection

- **Learning outcomes**

- Basics of protein reactivity
- Tanning and cross linking of collagen
- Coloration of leather: wet-end and finishing
- Hiding leather defects in finishing
- Basic knowledge of leather production
- Dye and pigment selection

## VI. Analytical chemistry

*Instructor: Pascale Fillon and Oriane Cavelier*

- **Practical work to learn chemistry laboratory skills, notably the following:**

- Gas chromatography: gas chromatography principle and concrete application on the analysis of a mixture of unknown solvents (*separation, identification and quantification*)
- Infrared spectro-photometry principle: sampling techniques according to the product under analysis, highlight of major chemical bonds, identification of unknown polymers, concrete applications on any type of support (*liquid, powder, plastic material, paint, textile, leather...*)

- **Learning outcomes**

- What gas chromatography analysis and infrared spectro-photometry are used for, what information they allow one to gather about a product
- “Reverse engineering”: analyzing the components of materials
- Become familiar with some of the machines used to carry out these analyses, how to interpret the results

## VII. Introduction to cosmetic products

*Instructor: Sophie Nazarian*

- **Theoretical class:**

- What is an emulsion?
- What are lipsticks made of?

- **Practical class:**

Make-up products: lipstick

- Formulation and characterization of a lipstick
  - \* with different waxes
  - \* with different oil phases
  - \* Controls: sensory tests

Skin care products: emulsions

- Formulation of oil/water and water/oil emulsions
  - \* with different nature of surfactants
  - \* with different oil phases
  - \* Controls: pH, viscosity, centrifugation and microscope observations

Learning outcomes:

- Basic principles of chemical formulation with the added sanitary constraints applied to cosmetics – Characterization: analysis and measure of materials' structure and properties
- Introduction to controls: quality, tests for desired properties
- Introduction to some of the main raw materials used in cosmetics





## VIII. Introduction to textile manufacturing

*Instructor: Fabien Roland*

- **Presentation of the manufacturing textile chain, from raw materials to end-products**
  - Overview of textile technologies and relative machines
  - Visit of the textile platform
    - \* Spinning, weaving and knitting workshops
    - \* Finishing and testing laboratories
- **Practical work: treatments on a cotton/polyester blend fabric**
  - Dyeing
    - \* Use of a dyeing lab machine, type jigger
    - \* Development of a dyeing recipe and a dyeing process
    - \* Analysis of the result: color yield, levelness
  - Chemical finishing
    - \* Use of a finishing lab line, type pad and stenter frame
    - \* Development of a finishing recipe with chemical repellents
    - \* Analysis of the result: water and oil repellency control
- **Learning outcomes**
  - Textile manufacturing technologies
  - Dyeing machinery and process
  - Stain-repellent finishing

# Applications are now open!

*Ideal for students with one or two years of undergraduate studies in science, especially chemistry.*

**For more program information and the application, visit:**  
[www.iplsummerschool.com](http://www.iplsummerschool.com)

**For administrative questions, contact Julie Pontvianne**

(Head of International Relations):

[julie.pontvianne@itech.fr](mailto:julie.pontvianne@itech.fr) - +334 72 18 01 71 / +337 65 23 85 57

**For pedagogical questions, contact Cedric Boschard**

(Head of academic content of the Summer school):

[cedric.boschard@itech.fr](mailto:cedric.boschard@itech.fr) - +334 72 18 01 70

